Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Añadir filtros

Intervalo de año
2.
medrxiv; 2020.
Preprint en Inglés | medRxiv | ID: ppzbmed-10.1101.2020.07.31.20165126

RESUMEN

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections has affected more than 15 million people and, as of 22 July 2019, caused deaths of more than 0.6 million individuals globally. With the excretion of SARS-CoV-2 in the stool of symptomatic and asymptomatic COVID-19 patients, its genome detection in the sewage water can be used as a powerful epidemiological tool to predict the number of positive cases in a population. This study was conducted to detect SARS-CoV-2 genome in sewage water during the lockdown. Sewage samples, from 28 pre-selected sites, were collected on alternate days from 13-25 July, 2020 from two selected areas [Johar Town (n = 05) and Township (n = 23)], where smart lockdown were implemented by the government authorities on 9th July, 2020. Genomic RNA was extracted and the SARS-CoV-2 was detected and quantified using commercially available kit through Real-Time PCR. Out of 28, sixteen samples were positive on day one while 19, 17, 23, 17, 05 and 09 samples were positive on day 3, 5, 7, 9, 11, and 13, respectively. These results indicate the decreasing viral copy load with the passage of time however few sites did not followed a clear pattern indicating the complexities in sewage water based surveillance i.e time of sampling. Hourly sampling from two sites for 24 hours also revealed the impact of time sampling time on detection of SARS-CoV-2 genome in sewage pipelines and lift/disposal stations. Results of current study indicate a possible role of sewage-based COVID-19 surveillance in monitoring and execution of smart lockdowns.


Asunto(s)
Infecciones por Coronavirus , COVID-19
3.
biorxiv; 2020.
Preprint en Inglés | bioRxiv | ID: ppzbmed-10.1101.2020.06.29.171173

RESUMEN

Since the emergence of CoVID-19 pandemic in China in late 2019, scientists are striving hard to explore non-toxic, viable anti-SARS-CoV-2 compounds or medicines. We determined In Vitro anti-SARS-CoV-2 activity of oral formulations (syrup and capsule) of an Iodine-complex (Renessans). A monolayer of vero cells were exposed to SARS-CoV-2 in the presence and absence of different concentrations (equivalent to 50, 05 and 0.5 g/ml of I2) of Renessans. Anti-SARS-CoV-2 activity of each of the formulation was assessed in the form of cell survival, SARS-CoV-2-specific cytopathic effect (CPE) and genome quantization. With varying concentrations of syrup and capsule, a varying rate of inhibition of CPE, cells survival and virus replication was observed. Compared to 0.5 g/ml concentration of Renessans syrup, 5 and 50 g/ml showed comparable results where there was a 100% cell survival, no CPEs and a negligible viral replication ({Delta}CT= 0.11 and 0.13, respectively). This study indicates that Renessans, containing iodine, may have potential activity against SARS-CoV-2 which needs to be further investigated in human clinical trials.


Asunto(s)
COVID-19
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA